Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

MR imaging of the amide‐proton transfer effect and the pH‐insensitive nuclear overhauser effect at 9.4 T

Identifieur interne : 005F03 ( Main/Exploration ); précédent : 005F02; suivant : 005F04

MR imaging of the amide‐proton transfer effect and the pH‐insensitive nuclear overhauser effect at 9.4 T

Auteurs : Tao Jin [États-Unis] ; Ping Wang [États-Unis] ; Xiaopeng Zong [États-Unis] ; Seong-Gi Kim [États-Unis]

Source :

RBID : ISTEX:3F55131CCC2ADD7C2BA5734E698CA745A73DECA8

Descripteurs français

English descriptors

Abstract

The amide proton transfer (APT) effect has emerged as a unique endogenous molecular imaging contrast mechanism with great clinical potentials. However, in vivo quantitative mapping of APT using the conventional asymmetry analysis is difficult due to the confounding nuclear Overhauser effect (NOE) and the asymmetry of the magnetization transfer effect. Here, we showed that the asymmetry of magnetization transfer contrast from immobile macromolecules is highly significant, and the wide spectral separation associated with a high magnetic field of 9.4 T delineates APT and NOE peaks in a Z‐spectrum. Therefore, high‐resolution apparent APT and NOE maps can be obtained from measurements at three offsets. The apparent APT value was greater in gray matter compared to white matter in normal rat brain and was sensitive to tissue acidosis and correlated well with apparent diffusion coefficient in the rat focal ischemic brain. In contrast, no ischemia‐induced contrast was observed in the apparent NOE map. The concentration dependence and the pH insensitivity of NOE were confirmed in phantom experiments. Our results demonstrate that in vivo apparent APT and NOE maps can be easily obtained at high magnetic fields and the pH‐insensitive NOE may be a useful indicator of mobile macromolecular contents. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.

Url:
DOI: 10.1002/mrm.24315


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">MR imaging of the amide‐proton transfer effect and the pH‐insensitive nuclear overhauser effect at 9.4 T</title>
<author>
<name sortKey="Jin, Tao" sort="Jin, Tao" uniqKey="Jin T" first="Tao" last="Jin">Tao Jin</name>
</author>
<author>
<name sortKey="Wang, Ping" sort="Wang, Ping" uniqKey="Wang P" first="Ping" last="Wang">Ping Wang</name>
</author>
<author>
<name sortKey="Zong, Xiaopeng" sort="Zong, Xiaopeng" uniqKey="Zong X" first="Xiaopeng" last="Zong">Xiaopeng Zong</name>
</author>
<author>
<name sortKey="Kim, Seong I" sort="Kim, Seong I" uniqKey="Kim S" first="Seong-Gi" last="Kim">Seong-Gi Kim</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:3F55131CCC2ADD7C2BA5734E698CA745A73DECA8</idno>
<date when="2013" year="2013">2013</date>
<idno type="doi">10.1002/mrm.24315</idno>
<idno type="url">https://api.istex.fr/document/3F55131CCC2ADD7C2BA5734E698CA745A73DECA8/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000F23</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000F23</idno>
<idno type="wicri:Area/Istex/Curation">000F23</idno>
<idno type="wicri:Area/Istex/Checkpoint">000C52</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000C52</idno>
<idno type="wicri:doubleKey">0740-3194:2013:Jin T:mr:imaging:of</idno>
<idno type="wicri:Area/Main/Merge">006245</idno>
<idno type="wicri:Area/Main/Curation">005F03</idno>
<idno type="wicri:Area/Main/Exploration">005F03</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">MR imaging of the amide‐proton transfer effect and the pH‐insensitive nuclear overhauser effect at 9.4 T</title>
<author>
<name sortKey="Jin, Tao" sort="Jin, Tao" uniqKey="Jin T" first="Tao" last="Jin">Tao Jin</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Neuroimaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université de Pittsburgh</orgName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Correspondence address: Ph.D., Department of Radiology, University of Pittsburgh, 3025 E Carson Street, Room 156, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Wang, Ping" sort="Wang, Ping" uniqKey="Wang P" first="Ping" last="Wang">Ping Wang</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Neuroimaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université de Pittsburgh</orgName>
</affiliation>
</author>
<author>
<name sortKey="Zong, Xiaopeng" sort="Zong, Xiaopeng" uniqKey="Zong X" first="Xiaopeng" last="Zong">Xiaopeng Zong</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Neuroimaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université de Pittsburgh</orgName>
</affiliation>
</author>
<author>
<name sortKey="Kim, Seong I" sort="Kim, Seong I" uniqKey="Kim S" first="Seong-Gi" last="Kim">Seong-Gi Kim</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Neuroimaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université de Pittsburgh</orgName>
</affiliation>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université de Pittsburgh</orgName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Magnetic Resonance in Medicine</title>
<title level="j" type="alt">MAGNETIC RESONANCE IN MEDICINE</title>
<idno type="ISSN">0740-3194</idno>
<idno type="eISSN">1522-2594</idno>
<imprint>
<biblScope unit="vol">69</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="760">760</biblScope>
<biblScope unit="page" to="770">770</biblScope>
<biblScope unit="page-count">11</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2013-03-01">2013-03-01</date>
</imprint>
<idno type="ISSN">0740-3194</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0740-3194</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aliphatic</term>
<term>Amide</term>
<term>Amide proton frequency</term>
<term>Amide proton transfer</term>
<term>Annual meeting</term>
<term>Apparent diffusion coefficient</term>
<term>Apparent mtcmm</term>
<term>Asymmetry</term>
<term>Better visualization</term>
<term>Boundary frequencies</term>
<term>Boundary images</term>
<term>Cerebrospinal fluid</term>
<term>Cest</term>
<term>Cest signals</term>
<term>Chemical exchange</term>
<term>Chemical exchange saturation transfer</term>
<term>Color figure</term>
<term>Concentration dependence</term>
<term>Continuous wave pulse</term>
<term>Contralateral</term>
<term>Contralateral side</term>
<term>Corpus callosum</term>
<term>Cyan arrows</term>
<term>Data points</term>
<term>Direct water saturation</term>
<term>Exchange rate</term>
<term>Expts</term>
<term>Finer steps</term>
<term>Free water</term>
<term>Good approximation</term>
<term>Gray matter</term>
<term>Green arrow</term>
<term>Green arrows</term>
<term>High field</term>
<term>Human brain</term>
<term>Imaging</term>
<term>Imaging sequence</term>
<term>Immobile macromolecules</term>
<term>Internal capsule</term>
<term>Ipsilateral</term>
<term>Irradiation power</term>
<term>Irradiation power dependence</term>
<term>Irradiation pulse power</term>
<term>Ischemia</term>
<term>Ischemic</term>
<term>Ischemic brain</term>
<term>Ischemic contrast</term>
<term>Label frequency</term>
<term>Label image</term>
<term>Large lesion</term>
<term>Lesion</term>
<term>Lesion area</term>
<term>Lesion contrast</term>
<term>Line segments</term>
<term>Linear approximation</term>
<term>Linear function</term>
<term>Macromolecule</term>
<term>Magn</term>
<term>Magn reson</term>
<term>Magnetization</term>
<term>Magnetization transfer</term>
<term>Magnetization transfer contrast</term>
<term>Matrix size</term>
<term>Maximum mtcmm</term>
<term>Mcao</term>
<term>Mcao animals</term>
<term>Mcao rats</term>
<term>Mcao studies</term>
<term>Measurement approach</term>
<term>Mobile macromolecules</term>
<term>Mobile proteins</term>
<term>Mtcim</term>
<term>Mtcim asymmetry</term>
<term>Mtcim effect</term>
<term>Mtcim effects</term>
<term>Mtcmm</term>
<term>Mtcmm contributions</term>
<term>Mtrasym</term>
<term>Mtrasym analysis</term>
<term>Mtrasym maps</term>
<term>Multiple sclerosis</term>
<term>Negative frequency</term>
<term>Noise ratio</term>
<term>Normal animals</term>
<term>Nuclear overhauser effect</term>
<term>Online</term>
<term>Online issue</term>
<term>Overhauser</term>
<term>Peptide</term>
<term>Phantom</term>
<term>Phantom experiments</term>
<term>Phosphate buffer saline</term>
<term>Postacquisition recovery time</term>
<term>Proton</term>
<term>Quantification</term>
<term>Quantification error</term>
<term>Quantitative imaging</term>
<term>Reference frequency</term>
<term>Regional heterogeneity</term>
<term>Reson</term>
<term>Roi</term>
<term>Saturation</term>
<term>Saturation pulse</term>
<term>Saturation transfer experiment</term>
<term>Saturation transfer experiments</term>
<term>Scatter plot</term>
<term>Tissue acidosis</term>
<term>Vivo</term>
<term>Vivo experiments</term>
<term>Water resonance</term>
<term>Water resonance frequency</term>
<term>Water signal</term>
<term>White matter</term>
<term>Wider range</term>
<term>Wiley periodicals</term>
<term>Zhou</term>
<term>Zijl</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Aliphatic</term>
<term>Amide</term>
<term>Amide proton frequency</term>
<term>Amide proton transfer</term>
<term>Annual meeting</term>
<term>Apparent diffusion coefficient</term>
<term>Apparent mtcmm</term>
<term>Asymmetry</term>
<term>Better visualization</term>
<term>Boundary frequencies</term>
<term>Boundary images</term>
<term>Cerebrospinal fluid</term>
<term>Cest</term>
<term>Cest signals</term>
<term>Chemical exchange</term>
<term>Chemical exchange saturation transfer</term>
<term>Color figure</term>
<term>Concentration dependence</term>
<term>Continuous wave pulse</term>
<term>Contralateral</term>
<term>Contralateral side</term>
<term>Corpus callosum</term>
<term>Cyan arrows</term>
<term>Data points</term>
<term>Direct water saturation</term>
<term>Exchange rate</term>
<term>Expts</term>
<term>Finer steps</term>
<term>Free water</term>
<term>Good approximation</term>
<term>Gray matter</term>
<term>Green arrow</term>
<term>Green arrows</term>
<term>High field</term>
<term>Human brain</term>
<term>Imaging</term>
<term>Imaging sequence</term>
<term>Immobile macromolecules</term>
<term>Internal capsule</term>
<term>Ipsilateral</term>
<term>Irradiation power</term>
<term>Irradiation power dependence</term>
<term>Irradiation pulse power</term>
<term>Ischemia</term>
<term>Ischemic</term>
<term>Ischemic brain</term>
<term>Ischemic contrast</term>
<term>Label frequency</term>
<term>Label image</term>
<term>Large lesion</term>
<term>Lesion</term>
<term>Lesion area</term>
<term>Lesion contrast</term>
<term>Line segments</term>
<term>Linear approximation</term>
<term>Linear function</term>
<term>Macromolecule</term>
<term>Magn</term>
<term>Magn reson</term>
<term>Magnetization</term>
<term>Magnetization transfer</term>
<term>Magnetization transfer contrast</term>
<term>Matrix size</term>
<term>Maximum mtcmm</term>
<term>Mcao</term>
<term>Mcao animals</term>
<term>Mcao rats</term>
<term>Mcao studies</term>
<term>Measurement approach</term>
<term>Mobile macromolecules</term>
<term>Mobile proteins</term>
<term>Mtcim</term>
<term>Mtcim asymmetry</term>
<term>Mtcim effect</term>
<term>Mtcim effects</term>
<term>Mtcmm</term>
<term>Mtcmm contributions</term>
<term>Mtrasym</term>
<term>Mtrasym analysis</term>
<term>Mtrasym maps</term>
<term>Multiple sclerosis</term>
<term>Negative frequency</term>
<term>Noise ratio</term>
<term>Normal animals</term>
<term>Nuclear overhauser effect</term>
<term>Online</term>
<term>Online issue</term>
<term>Overhauser</term>
<term>Peptide</term>
<term>Phantom</term>
<term>Phantom experiments</term>
<term>Phosphate buffer saline</term>
<term>Postacquisition recovery time</term>
<term>Proton</term>
<term>Quantification</term>
<term>Quantification error</term>
<term>Quantitative imaging</term>
<term>Reference frequency</term>
<term>Regional heterogeneity</term>
<term>Reson</term>
<term>Roi</term>
<term>Saturation</term>
<term>Saturation pulse</term>
<term>Saturation transfer experiment</term>
<term>Saturation transfer experiments</term>
<term>Scatter plot</term>
<term>Tissue acidosis</term>
<term>Vivo</term>
<term>Vivo experiments</term>
<term>Water resonance</term>
<term>Water resonance frequency</term>
<term>Water signal</term>
<term>White matter</term>
<term>Wider range</term>
<term>Wiley periodicals</term>
<term>Zhou</term>
<term>Zijl</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Taux de change</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The amide proton transfer (APT) effect has emerged as a unique endogenous molecular imaging contrast mechanism with great clinical potentials. However, in vivo quantitative mapping of APT using the conventional asymmetry analysis is difficult due to the confounding nuclear Overhauser effect (NOE) and the asymmetry of the magnetization transfer effect. Here, we showed that the asymmetry of magnetization transfer contrast from immobile macromolecules is highly significant, and the wide spectral separation associated with a high magnetic field of 9.4 T delineates APT and NOE peaks in a Z‐spectrum. Therefore, high‐resolution apparent APT and NOE maps can be obtained from measurements at three offsets. The apparent APT value was greater in gray matter compared to white matter in normal rat brain and was sensitive to tissue acidosis and correlated well with apparent diffusion coefficient in the rat focal ischemic brain. In contrast, no ischemia‐induced contrast was observed in the apparent NOE map. The concentration dependence and the pH insensitivity of NOE were confirmed in phantom experiments. Our results demonstrate that in vivo apparent APT and NOE maps can be easily obtained at high magnetic fields and the pH‐insensitive NOE may be a useful indicator of mobile macromolecular contents. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Pennsylvanie</li>
</region>
<settlement>
<li>Pittsburgh</li>
</settlement>
<orgName>
<li>Université de Pittsburgh</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Pennsylvanie">
<name sortKey="Jin, Tao" sort="Jin, Tao" uniqKey="Jin T" first="Tao" last="Jin">Tao Jin</name>
</region>
<name sortKey="Jin, Tao" sort="Jin, Tao" uniqKey="Jin T" first="Tao" last="Jin">Tao Jin</name>
<name sortKey="Jin, Tao" sort="Jin, Tao" uniqKey="Jin T" first="Tao" last="Jin">Tao Jin</name>
<name sortKey="Kim, Seong I" sort="Kim, Seong I" uniqKey="Kim S" first="Seong-Gi" last="Kim">Seong-Gi Kim</name>
<name sortKey="Kim, Seong I" sort="Kim, Seong I" uniqKey="Kim S" first="Seong-Gi" last="Kim">Seong-Gi Kim</name>
<name sortKey="Wang, Ping" sort="Wang, Ping" uniqKey="Wang P" first="Ping" last="Wang">Ping Wang</name>
<name sortKey="Zong, Xiaopeng" sort="Zong, Xiaopeng" uniqKey="Zong X" first="Xiaopeng" last="Zong">Xiaopeng Zong</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005F03 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 005F03 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:3F55131CCC2ADD7C2BA5734E698CA745A73DECA8
   |texte=   MR imaging of the amide‐proton transfer effect and the pH‐insensitive nuclear overhauser effect at 9.4 T
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021